
18.06 MIDTERM 2 - SOLUTIONS

PROBLEM 1

(1) Use the Gram-Schmidt process to convert the vectors: 4
6
12

 and

 1
−9
−4


into an orthonormal basis of the vector space they span. Show all your steps! (15 pts)

Solution: The first step is to rescale v1 =

 4
6
12

 to that it has length 1:

q1 =
v1

||v1||
=

v1

14
=

1

7

2
3
6


The next step is to modify v2 =

 1
−9
−4

 so that its orthogonal to q1:

w2 = v2 − projq1
v2 = v2 − q1(q1 · v2) = v2 + 7 · q1 =

 3
−6
2


The final step is to rescale w2 so that it has length 1:

q2 =
w2

||w2||
=

w2

7
=

1

7

 3
−6
2



(2) Use the previous part to obtain a factorization:

A = QR of the matrix A =

 4 1
6 −9
12 −4


where Q has orthonormal columns and R is an upper triangular square matrix. Show all
the steps of your argument, and explain how it derives from part (1)! (10 pts)



Solution: The matrix Q is precisely:

Q =
[
q1 q2

]
=

1

7

2 3
3 −6
6 2


As for R, we will compute it by recasting the Gram-Schmidt process as multiplying A on
the right by elimination and diagonal matrices:

AD
( 1
14)

1 E
(7)
12 D

( 1
7)

2 = Q

By inverting the D and E matrices and moving them to the right, we get:

A = QD
(7)
2 E

(−7)
12 D

(14)
1︸ ︷︷ ︸

call this R

An explicit computation shows that:

R =

[
14 −7
0 7

]

(3) With the matrix Q as on the previous page, consider the linear transformation:

f : R2 → R3, f(v) = Qv

Suppose you have any two orthogonal (i.e. perpendicular) vectors v1,v2 ∈ R2. Use linear
algebra to prove that the vectors f(v1), f(v2) ∈ R3 are also orthogonal. (5 pts)

Solution: Because the columns of Q are orthonormal, we have:

QTQ = I2

In order to have f(v1) ⊥ f(v2), we would need to check that their dot product is 0:

(Qv1)
TQv2 = vT

1 Q
TQ︸ ︷︷ ︸
I2

v2 = vT
1 v2 = 0

where the last equality holds because v1 ⊥ v2.

(4) Guess (no explanation needed, just this once) an eigenvector a 6= 0 of the matrix R from
the previous page, and the corresponding eigenvalue. Draw the linear transformation:

g : R2 → R2, g(w) = Rw

on a picture of R2, by drawing the eigenvector a and showing where the function g sends
both a and any other vector in R2 of your choice, linearly independent from a. (5 pts)

Solution: Because R is upper triangular, an eigenvector is

[
1
0

]
, and the corresponding

eigenvalue is 14. We will accept any picture, even if not to precise scale, as long as the

coordinates of g

([
1
0

])
and g(the other chosen vector) are clearly marked.



PROBLEM 2

(1) Use row operations (i.e. ± product of pivots) to compute the determinant of the matrix: 2 3 1
−4 −6 −1
1 2 1


(if instead of row operations, you use any other method to compute the determinant, you
will lose between 50% and 70% of the points). (10 pts)

Solution: Let’s perform row reduction: 2 3 1
−4 −6 −1
1 2 1

 r2+2r1−−−−→

2 3 1
0 0 1
1 2 1

 switch r2 and r3−−−−−−−−−→

2 3 1
1 2 1
0 0 1

 r2− r1
2−−−→

2 3 1
0 1

2
1
2

0 0 1


The determinant is the product of the pivots (so 2 · 1

2
· 1 = 1) times −1 raised to the number

of times we switched rows (so (−1)1). We conclude that det = −1.

(2) Compute z from the system of equations below using Cramer’s rule: 2 0 1
−3 −1 0
0 1 1

xy
z

 =

1
1
1


You must explicitly write z as a ratio of determinants, and compute these determinants via
cofactor expansion. (10 pts)

Solution: Cramer’s rule tells us that the solution is:

z =

det

 2 0 1
−3 −1 1
0 1 1


det

 2 0 1
−3 −1 0
0 1 1


We will compute the two determinants above by cofactor expansions along the first row:

det

 2 0 1
−3 −1 1
0 1 1

 = 2 · (−1)1+1 det

[
−1 1
1 1

]
+ 1 · (−1)1+3 det

[
−3 −1
0 1

]
= −7

det

 2 0 1
−3 −1 0
0 1 1

 = 2 · (−1)1+1 det

[
−1 0
1 1

]
+ 1 · (−1)1+3 det

[
−3 −1
0 1

]
= −5



So the solution is:

z =
7

5

(3) Consider an arbitrary n× n matrix A. We have the following formula for the inverse:

A−1 =
1

detA
· CT

where the (i, j) entry of the cofactor matrix C is (−1)i+j times the determinant of the
(n− 1)× (n− 1) matrix obtained by removing row i and column j from A.

Find and prove a formula for detC in terms of detA. Explain all your steps! (5 pts)

Solution: Since detA−1 = (detA)−1, the identity in the box gives us:

(detA)−1 = (detA)−n · detCT ⇒ detCT = (detA)n−1

Since the determinant of a matrix is equal to the determinant of its transpose, we conclude
that the answer is detC = (detA)n−1.

(4) The big formula for the determinant of:
0 0 0 a14 a15 a16
0 0 0 0 a25 a26
0 0 0 0 0 a36
a41 a42 a43 a44 a45 a46
0 a52 a53 a54 a55 a56
0 0 a63 a64 a65 a66


is a sum of 6! = 720 terms. Explain why 719 of these terms are zero, but one is non-zero
(assuming the aij’s are non-zero themselves). What is this non-zero term? (10 pts)

Solution: The 6! = 720 terms in the big formula arise as products of various six-tuples of
matrix entries, no two on the same row or the same column. So if we want a non-zero term
in the big formula, we need to choose 6 non-zero matrix entries, a single one of which lies on
any row and any column. Clearly, on the first column we must choose a41. But then we are
not allowed to choose any other entry on row 4, so on the second column we must choose
a52. But then we are not allowed to choose any other entry on rows 4 and 5, so on the third
column we must choose a63. But then we are not allowed to choose any other entry on rows
4, 5 and 6, so on the fourth column we must choose a14. But then we are not allowed to
choose any other entry on rows 1, 4, 5 and 6, so on the fifth column we must choose a25. But
then we are not allowed to choose any other entry on rows 1,2, 4, 5 and 6, so on the sixth
column we must choose a36. We conclude that the only non-zero term in the big formula is:

−a14a25a36a41a52a63
The − sign in front is due to the fact that we need an odd number of row swaps to put
the entries a14, a25, a36, a41, a52, a63 in the “usual” top-left to bottom-right ordering of the



pivots: you would need to swaps rows 1 and 4, rows 2 and 5, and rows 3 and 6. Alternatively,
−1 is the signature of the permutation (4, 5, 6, 1, 2, 3).

PROBLEM 3

Consider the linear transformation φ : R3 → R3, φ(v) = Av, where:

A =

 2 1 1
−1 0 −1
1 1 2


We’ll give you the following bits of information:

• φ fixes a certain (two-dimensional) plane P ⊂ R3, i.e. φ(v) = v for all v ∈ P

• φ rescales a certain line ` ⊂ R3 by a factor of 2, i.e. φ(w) = 2w for all w ∈ `

(1) What are the eigenvalues of A, and their algebraic/geometric multiplicities (explain how
you know, based on the information given in the bullets above)? (10 pts)

Solution: The first bullet tells us that Av = v for all v ∈ P , which means that the
eigenvalue 1 has geometric multiplicity at least 2. The second bullet tells us that Aw = 2w
for all w ∈ `, which means that the eigenvalue 2 has geometric multiplicity at least 1.
However, the sum of the algebraic multiplicities is 3, so we conclude that the geometric
multiplicities are as large as they can be (2 + 1 = 3). Hence the geometric multiplicities are
equal to the algebraic multiplicities, and so the eigenvalues are:

1, 1, 2

(or 1 with algebraic/geometric multiplicity 2 and 2 with algebraic/geometric multiplicity 1).

(2) Compute a basis for the line ` in the previous part. (5 pts)

Solution: Clearly ` is the eigenspace of A corresponding to the eigenvalue 2:

` = N(A− 2I) = N

 0 1 1
−1 −2 −1
1 1 0

 r1↔r2−−−→ N

−1 −2 −1
0 1 1
1 1 0

 r3+r1−−−→

r3+r1−−−→ N

−1 −2 −1
0 1 1
0 −1 −1

 r3+r2−−−→ N

−1 −2 −1
0 1 1
0 0 0





So a basis of ` is given by any vector

xy
z

 satisfying:

{
−x− 2y − z = 0

y + z = 0

By back substitution, such a vector is

 1
−1
1

.

Consider the matrix:

B =

[
2 −1
2 0

]

(3) Find an invertible matrix V and a diagonal matrix D such that:[
2 −1
2 0

]
= V DV −1

(in other words, diagonalize the 2× 2 matrix in the left hand side). (15 pts)

Hints:

• It’s enough to compute one eigenvalue and its eigenvector (show all your steps). Then
you can invoke a general principle (say what it is) to get the other eigenvalue/eigenvector

• Don’t be afraid if the answer will involve complex numbers

• Don’t forget to tell us what V and D are

Solution: First we compute the characteristic polynomial of

[
2 −1
2 0

]
:

p(λ) = det

[
2− λ −1

2 −λ

]
= (2− λ)(−λ) + 2 = λ2 − 2λ+ 2

The roots of the characteristic polynomial are given by the quadratic equation, which gives:

λ1 = 1 + i and λ2 = 1− i
As for eigenvectors, we need:

v1 ∈ N
([

2 −1
2 0

]
− λ1I

)
= N

([
1− i −1

2 −1− i

])
r1↔r2−−−→ N

([
2 −1− i

1− i −1

])
r2− 1−i

2−−−−→

r2− 1−i
2−−−−→ N

([
2 −1− i
0 −1− (1−i)(−1−i)

2

])
= N

([
2 −1− i
0 0

])



So an eigenvector is given by

[
x
y

]
with 2x− (1 + i)y = 0, such as:

v1 =

[
1+i
2
1

]
(there are other ways to compute the nullspace above, e.g. you don’t need to do the row
swap, but then you would need to invert a complex number). As with any matrix with real
entries, their complex eigenvalues come in complex conjugate pairs, and the corresponding
eigenvectors are also conjugates of each other. Since λ2 is the conjugate of λ1, we conclude
that an eigenvector of the former is a conjugate of an eigenvector of the latter:

v2 =

[
1−i
2
1

]
We conclude that:

V =

[
1+i
2

1−i
2

1 1

]
and D =

[
1 + i 0

0 1− i

]


