18.06 MIDTERM 2 - SOLUTIONS

PROBLEM 1

(1) Use the Gram-Schmidt process to convert the vectors:

$$
\left[\begin{array}{c}
4 \\
6 \\
12
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
1 \\
-9 \\
-4
\end{array}\right]
$$

into an orthonormal basis of the vector space they span. Show all your steps! (15 pts)
Solution: The first step is to rescale $\boldsymbol{v}_{1}=\left[\begin{array}{c}4 \\ 6 \\ 12\end{array}\right]$ to that it has length 1 :

$$
\boldsymbol{q}_{1}=\frac{\boldsymbol{v}_{1}}{\left\|\boldsymbol{v}_{1}\right\|}=\frac{\boldsymbol{v}_{1}}{14}=\frac{1}{7}\left[\begin{array}{l}
2 \\
3 \\
6
\end{array}\right]
$$

The next step is to modify $\boldsymbol{v}_{2}=\left[\begin{array}{c}1 \\ -9 \\ -4\end{array}\right]$ so that its orthogonal to \boldsymbol{q}_{1} :

$$
\boldsymbol{w}_{2}=\boldsymbol{v}_{2}-\operatorname{proj}_{\boldsymbol{q}_{1}} \boldsymbol{v}_{2}=\boldsymbol{v}_{2}-\boldsymbol{q}_{1}\left(\boldsymbol{q}_{1} \cdot \boldsymbol{v}_{2}\right)=\boldsymbol{v}_{2}+7 \cdot \boldsymbol{q}_{1}=\left[\begin{array}{c}
3 \\
-6 \\
2
\end{array}\right]
$$

The final step is to rescale \boldsymbol{w}_{2} so that it has length 1 :

$$
\boldsymbol{q}_{2}=\frac{\boldsymbol{w}_{2}}{\left\|\boldsymbol{w}_{2}\right\|}=\frac{\boldsymbol{w}_{2}}{7}=\frac{1}{7}\left[\begin{array}{c}
3 \\
-6 \\
2
\end{array}\right]
$$

(2) Use the previous part to obtain a factorization:

$$
A=Q R \quad \text { of the matrix } \quad A=\left[\begin{array}{cc}
4 & 1 \\
6 & -9 \\
12 & -4
\end{array}\right]
$$

where Q has orthonormal columns and R is an upper triangular square matrix. Show all the steps of your argument, and explain how it derives from part (1)! (10 pts)

Solution: The matrix Q is precisely:

$$
Q=\left[\boldsymbol{q}_{1} \mid \boldsymbol{q}_{2}\right]=\frac{1}{7}\left[\begin{array}{cc}
2 & 3 \\
3 & -6 \\
6 & 2
\end{array}\right]
$$

As for R, we will compute it by recasting the Gram-Schmidt process as multiplying A on the right by elimination and diagonal matrices:

$$
A D_{1}^{\left(\frac{1}{14}\right)} E_{12}^{(7)} D_{2}^{\left(\frac{1}{7}\right)}=Q
$$

By inverting the D and E matrices and moving them to the right, we get:

$$
A=Q \underbrace{D_{2}^{(7)} E_{12}^{(-7)} D_{1}^{(14)}}_{\text {call this } R}
$$

An explicit computation shows that:

$$
R=\left[\begin{array}{cc}
14 & -7 \\
0 & 7
\end{array}\right]
$$

(3) With the matrix Q as on the previous page, consider the linear transformation:

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad f(\mathbf{v})=Q \mathbf{v}
$$

Suppose you have any two orthogonal (i.e. perpendicular) vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$. Use linear algebra to prove that the vectors $f\left(\mathbf{v}_{1}\right), f\left(\mathbf{v}_{2}\right) \in \mathbb{R}^{3}$ are also orthogonal.

Solution: Because the columns of Q are orthonormal, we have:

$$
Q^{T} Q=I_{2}
$$

In order to have $f\left(\boldsymbol{v}_{1}\right) \perp f\left(\boldsymbol{v}_{2}\right)$, we would need to check that their dot product is 0 :

$$
\left(Q \boldsymbol{v}_{1}\right)^{T} Q \boldsymbol{v}_{2}=\boldsymbol{v}_{1}^{T} \underbrace{Q^{T} Q}_{I_{2}} \boldsymbol{v}_{2}=\boldsymbol{v}_{1}^{T} \boldsymbol{v}_{2}=0
$$

where the last equality holds because $\boldsymbol{v}_{1} \perp \boldsymbol{v}_{2}$.
(4) Guess (no explanation needed, just this once) an eigenvector $\mathbf{a} \neq 0$ of the matrix R from the previous page, and the corresponding eigenvalue. Draw the linear transformation:

$$
g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad g(\mathbf{w})=R \mathbf{w}
$$

on a picture of \mathbb{R}^{2}, by drawing the eigenvector a and showing where the function g sends both a and any other vector in \mathbb{R}^{2} of your choice, linearly independent from \mathbf{a}.
(5 pts)
Solution: Because R is upper triangular, an eigenvector is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and the corresponding eigenvalue is 14 . We will accept any picture, even if not to precise scale, as long as the coordinates of $g\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and g (the other chosen vector) are clearly marked.

PROBLEM 2

(1) Use row operations (i.e. \pm product of pivots) to compute the determinant of the matrix:

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
-4 & -6 & -1 \\
1 & 2 & 1
\end{array}\right]
$$

(if instead of row operations, you use any other method to compute the determinant, you will lose between 50% and 70% of the points).
(10 pts)
Solution: Let's perform row reduction:

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
-4 & -6 & -1 \\
1 & 2 & 1
\end{array}\right] \xrightarrow{r_{2}+2 r_{1}}\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & 0 & 1 \\
1 & 2 & 1
\end{array}\right] \xrightarrow{\text { switch } r_{2} \text { and } r_{3}}\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{r_{2}-\frac{r_{1}}{2}}\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right]
$$

The determinant is the product of the pivots (so $2 \cdot \frac{1}{2} \cdot 1=1$) times -1 raised to the number of times we switched rows (so $\left.(-1)^{1}\right)$. We conclude that det $=-1$.
(2) Compute z from the system of equations below using Cramer's rule:

$$
\left[\begin{array}{ccc}
2 & 0 & 1 \\
-3 & -1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

You must explicitly write z as a ratio of determinants, and compute these determinants via cofactor expansion.
(10 pts)
Solution: Cramer's rule tells us that the solution is:

$$
z=\frac{\operatorname{det}\left[\begin{array}{ccc}
2 & 0 & 1 \\
-3 & -1 & 1 \\
0 & 1 & 1
\end{array}\right]}{\operatorname{det}\left[\begin{array}{ccc}
2 & 0 & 1 \\
-3 & -1 & 0 \\
0 & 1 & 1
\end{array}\right]}
$$

We will compute the two determinants above by cofactor expansions along the first row:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ccc}
2 & 0 & 1 \\
-3 & -1 & 1 \\
0 & 1 & 1
\end{array}\right]=2 \cdot(-1)^{1+1} \operatorname{det}\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]+1 \cdot(-1)^{1+3} \operatorname{det}\left[\begin{array}{cc}
-3 & -1 \\
0 & 1
\end{array}\right]=-7 \\
& \operatorname{det}\left[\begin{array}{ccc}
2 & 0 & 1 \\
-3 & -1 & 0 \\
0 & 1 & 1
\end{array}\right]=2 \cdot(-1)^{1+1} \operatorname{det}\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]+1 \cdot(-1)^{1+3} \operatorname{det}\left[\begin{array}{cc}
-3 & -1 \\
0 & 1
\end{array}\right]=-5
\end{aligned}
$$

So the solution is:

$$
z=\frac{7}{5}
$$

(3) Consider an arbitrary $n \times n$ matrix A. We have the following formula for the inverse:

$$
A^{-1}=\frac{1}{\operatorname{det} A} \cdot C^{T}
$$

where the (i, j) entry of the cofactor matrix C is $(-1)^{i+j}$ times the determinant of the $(n-1) \times(n-1)$ matrix obtained by removing row i and column j from A.
$\underline{\text { Find and prove a formula for } \operatorname{det} C \text { in terms of } \operatorname{det} A . \text { Explain all your steps! (5 pts) }}$
Solution: Since $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$, the identity in the box gives us:

$$
(\operatorname{det} A)^{-1}=(\operatorname{det} A)^{-n} \cdot \operatorname{det} C^{T} \quad \Rightarrow \quad \operatorname{det} C^{T}=(\operatorname{det} A)^{n-1}
$$

Since the determinant of a matrix is equal to the determinant of its transpose, we conclude that the answer is $\operatorname{det} C=(\operatorname{det} A)^{n-1}$.
(4) The big formula for the determinant of:

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & a_{14} & a_{15} & a_{16} \\
0 & 0 & 0 & 0 & a_{25} & a_{26} \\
0 & 0 & 0 & 0 & 0 & a_{36} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\
0 & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\
0 & 0 & a_{63} & a_{64} & a_{65} & a_{66}
\end{array}\right]
$$

is a sum of $6!=720$ terms. Explain why 719 of these terms are zero, but one is non-zero (assuming the $a_{i j}$'s are non-zero themselves). What is this non-zero term?
(10 pts)
Solution: The $6!=720$ terms in the big formula arise as products of various six-tuples of matrix entries, no two on the same row or the same column. So if we want a non-zero term in the big formula, we need to choose 6 non-zero matrix entries, a single one of which lies on any row and any column. Clearly, on the first column we must choose a_{41}. But then we are not allowed to choose any other entry on row 4 , so on the second column we must choose a_{52}. But then we are not allowed to choose any other entry on rows 4 and 5 , so on the third column we must choose a_{63}. But then we are not allowed to choose any other entry on rows 4,5 and 6 , so on the fourth column we must choose a_{14}. But then we are not allowed to choose any other entry on rows $1,4,5$ and 6 , so on the fifth column we must choose a_{25}. But then we are not allowed to choose any other entry on rows $1,2,4,5$ and 6 , so on the sixth column we must choose a_{36}. We conclude that the only non-zero term in the big formula is:

$$
-a_{14} a_{25} a_{36} a_{41} a_{52} a_{63}
$$

The - sign in front is due to the fact that we need an odd number of row swaps to put the entries $a_{14}, a_{25}, a_{36}, a_{41}, a_{52}, a_{63}$ in the "usual" top-left to bottom-right ordering of the
pivots: you would need to swaps rows 1 and 4 , rows 2 and 5 , and rows 3 and 6. Alternatively, -1 is the signature of the permutation $(4,5,6,1,2,3)$.

PROBLEM 3

Consider the linear transformation $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \phi(\mathbf{v})=A \mathbf{v}$, where:

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
1 & 1 & 2
\end{array}\right]
$$

We'll give you the following bits of information:

- ϕ fixes a certain (two-dimensional) plane $P \subset \mathbb{R}^{3}$, i.e. $\phi(\boldsymbol{v})=\boldsymbol{v}$ for all $\boldsymbol{v} \in P$
- ϕ rescales a certain line $\ell \subset \mathbb{R}^{3}$ by a factor of 2 , i.e. $\phi(\boldsymbol{w})=2 \boldsymbol{w}$ for all $\boldsymbol{w} \in \ell$
(1) What are the eigenvalues of A, and their algebraic/geometric multiplicities (explain how you know, based on the information given in the bullets above)?

Solution: The first bullet tells us that $A \boldsymbol{v}=\boldsymbol{v}$ for all $\boldsymbol{v} \in P$, which means that the eigenvalue 1 has geometric multiplicity at least 2 . The second bullet tells us that $A \boldsymbol{w}=2 \boldsymbol{w}$ for all $\boldsymbol{w} \in \ell$, which means that the eigenvalue 2 has geometric multiplicity at least 1 . However, the sum of the algebraic multiplicities is 3 , so we conclude that the geometric multiplicities are as large as they can be $(2+1=3)$. Hence the geometric multiplicities are equal to the algebraic multiplicities, and so the eigenvalues are:

$$
1,1,2
$$

(or 1 with algebraic/geometric multiplicity 2 and 2 with algebraic/geometric multiplicity 1).
(2) Compute a basis for the line ℓ in the previous part.
(5 pts)
Solution: Clearly ℓ is the eigenspace of A corresponding to the eigenvalue 2 :

$$
\begin{aligned}
& \ell=N(A-2 I)=N\left(\left[\begin{array}{ccc}
0 & 1 & 1 \\
-1 & -2 & -1 \\
1 & 1 & 0
\end{array}\right]\right) \xrightarrow{r_{1} \leftrightarrow r_{2}} N\left(\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\right) \xrightarrow{r_{3}+r_{1}} \\
& \xrightarrow{r_{3}+r_{1}} N\left(\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 1 & 1 \\
0 & -1 & -1
\end{array}\right]\right) \xrightarrow{r_{3}+r_{2}} N\left(\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\right)
\end{aligned}
$$

So a basis of ℓ is given by any vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ satisfying:

$$
\left\{\begin{array}{l}
-x-2 y-z=0 \\
y+z=0
\end{array}\right.
$$

By back substitution, such a vector is $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.

Consider the matrix:

$$
B=\left[\begin{array}{cc}
2 & -1 \\
2 & 0
\end{array}\right]
$$

(3) Find an invertible matrix V and a diagonal matrix D such that:

$$
\left[\begin{array}{cc}
2 & -1 \\
2 & 0
\end{array}\right]=V D V^{-1}
$$

(in other words, diagonalize the 2×2 matrix in the left hand side).
Hints:

- It's enough to compute one eigenvalue and its eigenvector (show all your steps). Then you can invoke a general principle (say what it is) to get the other eigenvalue/eigenvector
- Don't be afraid if the answer will involve complex numbers
- Don't forget to tell us what V and D are

Solution: First we compute the characteristic polynomial of $\left[\begin{array}{cc}2 & -1 \\ 2 & 0\end{array}\right]$:

$$
p(\lambda)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & -1 \\
2 & -\lambda
\end{array}\right]=(2-\lambda)(-\lambda)+2=\lambda^{2}-2 \lambda+2
$$

The roots of the characteristic polynomial are given by the quadratic equation, which gives:

$$
\lambda_{1}=1+i \quad \text { and } \quad \lambda_{2}=1-i
$$

As for eigenvectors, we need:

$$
\begin{gathered}
\boldsymbol{v}_{1} \in N\left(\left[\begin{array}{cc}
2 & -1 \\
2 & 0
\end{array}\right]-\lambda_{1} I\right)=N\left(\left[\begin{array}{cc}
1-i & -1 \\
2 & -1-i
\end{array}\right]\right) \xrightarrow{r_{1} \leftrightarrow r_{2}} N\left(\left[\begin{array}{cc}
2 & -1-i \\
1-i & -1
\end{array}\right]\right) \xrightarrow{r_{2}-\frac{1-i}{2}} \\
\xrightarrow{r_{2}-\frac{1-i}{2}} N\left(\left[\begin{array}{cc}
2 & -1-i \\
0 & -1-\frac{(1-i)(-1-i)}{2}
\end{array}\right]\right)=N\left(\left[\begin{array}{cc}
2 & -1-i \\
0 & 0
\end{array}\right]\right)
\end{gathered}
$$

So an eigenvector is given by $\left[\begin{array}{l}x \\ y\end{array}\right]$ with $2 x-(1+i) y=0$, such as:

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
\frac{1+i}{2} \\
1
\end{array}\right]
$$

(there are other ways to compute the nullspace above, e.g. you don't need to do the row swap, but then you would need to invert a complex number). As with any matrix with real entries, their complex eigenvalues come in complex conjugate pairs, and the corresponding eigenvectors are also conjugates of each other. Since λ_{2} is the conjugate of λ_{1}, we conclude that an eigenvector of the former is a conjugate of an eigenvector of the latter:

$$
\boldsymbol{v}_{2}=\left[\begin{array}{c}
\frac{1-i}{2} \\
1
\end{array}\right]
$$

We conclude that:

$$
V=\left[\begin{array}{cc}
\frac{1+i}{2} & \frac{1-i}{2} \\
1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
1+i & 0 \\
0 & 1-i
\end{array}\right]
$$

